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Abstract: In modeling, analysis & control of flexible mechanisms, four bar mechanisms are generally preferred due to their
manufacturing techniques & low cost. Modeling, analysis and control of flexible mechanisms have been researched since the early 70s.
The investigation has been focused mostly on the definition of accurate mathematical models both for single flexible bodies and multi-
body systems. A general approach is presented for modeling of a flexible multi-body system by using a lumped mass finite element
method. With ANSYS theoretical and practical knowledge of the finite element method and analyzing engineering problems can be
gained. In this study, vibration characteristics of flexible four-bar mechanisms & natural frequencies and corresponding modes shapes
of the flexible mechanisms are investigated by using the procedure developed in ADAMS.

Keywords: Finite element method (FEM), Automatic dynamic analysis of mechanical systems (ADAMS). 

1. Introduction 

The high productivity & technology system demanded by
modern mechanical industry requires high operating speeds,
superior reliability, accurate performance, light weights and
high-precision machinery. In order to achieve high speed
operation with increased efficiency, weights of machine
components are reduced. As operating speed increases &
weight of components decreases, rigid body is not enough
so, a rigid body links becomes flexible. High speed light
weight manipulator is an example of flexible multi-body
system. We already know that modeling of flexible multi-
body systems can be done by using lumped mass finite
element method. Now we will perform modeling of flexible
multi-body systems considering lumped masses by
ADAMS. Finite element method is used for modeling of
flexible links which behave like both continuous systems
with infinite degrees of freedom and discrete systems. A
general model to describe the elastic motion of a mechanism
can be established with the use of finite element methods
resulting in a set of second order differential equations. A
common assumption in this procedure is that the total
motion is comprised of an elastic motion superposed onto
the rigid body motion. As a result the equations of this
motion have a significant feature time dependent
coefficients. If the effects of nonlinear elastic deflections
and/or nonlinear joint characteristics are considered, the
equations of motion will be nonlinear. The dynamic
response is viewed as a transient response and a steady state
response.

2. Kinematics of Rigid Four-Bar Mechanism 

A four-bar mechanism of which links are drawn as position 
vectors is shown inFigure 1.1. 

Figure 1.1: A four-bar linkage mechanism showing position 
vectors 

The vector loop closure equation shown in Figure 1.1 is
written as: 

01432  rrrr 
                          (1.1) 

Equation 1.1 is expressed in terms of complex numbers as
follows: 

01432
432  rererer iii 

              (1.2) 
By using the Euler expansion, Equation 1.2 is written as: 
      0sincossincossincos 1444333222  riririr 

(1.3) 
Equation 1.3 can be resolved into real and imaginary parts 
as: 

0coscoscos 1443322  rrrr  (1.4) 

0sinsinsin 443322   rrr               (1.5) 
Taking the square of both sides of Equations 1.4 and 1.5 and 
summing them, the following equation is found: 

2
14422

2
4422

2
3 )cossin()sinsin( rrrrrr  

(1.6) 
To simplify the Equation 1.6, the constants K1, K2, and K3

are defined interms of the constant link lengths in the 
equations: 
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424232241 sinsincoscoscoscos   KKK
(1.10) 

Then Freudenstein's equation (Todorov 2002) is obtained as
follows: 

)cos(coscos 4232241   KKK (1.11) 
In order to reduce the Equation 1.11 to a more tractable form 
for solution, thefollowing half angle identities are 
substituted: 
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Then, the following equation which is quadratic in terms of

)
2

tan( 4 is found: 
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(1.14) 

where 

322212 coscoscos KKKA   (1.15) 

2sin2 B                              (1.16) 

3221 cos)1( KKKC               (1.17) 

4 expressedin Equation 1.14 can be found by solving the 
quadratic equation as: 
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Where the plus and minus sign refers to two different 
configuration of the mechanism.  
In order to make velocity analysis of four-bar linkage, the 
derivation of Equation 1.2 is considered since r1 is constant 
and 02  , the aforementioned equation is found:  

0432
443322    iii eireireir (1.19) 

Resolving into real and imaginary parts, the following 
equations are written: 

0coscoscos 444333222   rrr (1.20) 

0sinsinsin 444333222   rrr 1.21) 
Then velocity equations are obtained as follows: 
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In order to make acceleration analysis of four-bar linkage, 
the derivation of Equation 1.19 is taken and the following 
equation is found: 
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(1.24) 
The following parameters are defined: 
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332 sinrD                                   (1.26) 

443 sinrD                                  (1.27) 
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332 cosrE                                   (1.29) 

443 cosrE                                (1.30) 
Therefore, Equation 1.25 and 1.26 are written as: 

043321   DDD                     (1.31) 

043321   EEE                      (1.32) 
Then, acceleration equations are obtained as follows: 
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By carrying out the substitution and simplification, angular 
acceleration expressions of link 3 and link 4 are found as
(Söylemez 1999): 
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Figure 1.2: Four-bar mechanism showing the centers of
gravity of links 

The centers of gravity of the links are shown in Figure 1.2. 
Accelerations of the centers of gravity can be found using 
the standard kinematic relationships as follows: 

2222
2
222 sincos  gga xG  (1.37) 
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Kinetics of Rigid Four-Bar Mechanism 
Kinetic analysis of rigid four-bar mechanism is based on the 
accelerations of the centers of gravity given by Equations 
1.37 to 1.42. Inertial force and inertial moment of the link 
iare given by

ii
inertia

i amF 
                              (1.43)

iGi
inertia
i IM 


                           (1.44)

Finite Element Model for Flexible Four-Bar Mechanism 
The finite element model shown in Figure 1.3 is used to
model any link of theflexible four-bar mechanism (Turcic 
and Midha 1984). 

eNud                              (1.45) 
where d is the local displacement vector of any point on

element and eu is the nodal displacements vector including 
nodal displacements shown in Figure 1.3 

Fig.1.3. A finite element for flexible link 
Te vuvuu ][ 222111  (1.46) 

The equation of motion for a single finite element of the 
mechanism is derived by using Lagrangian equation: 
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WhereQ are the generalized forces acting on elements. 
The position of any point in the finite element Rshown in
figure1.4 can be written as:

dTRR m 0                              (1.48) 
WhereR0is the position of the origin of the local (x, y) 
coordinate system, Tmis the transformation matrix between 
the local (x,y) coordinate system and the reference (X,Y) 
coordinate system which is given by: 

Figure 1.4: Positions of any point in terms of d 
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The kinetic energy of the element is given below: 
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2
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(1.50) 

The equation of motion of a single finite element is
expressed as: 
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dvNTTNm m
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T
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acc )(                   (1.55) 

e
eQ 1 is the force vector having the forces acting on the 

elements from adjacent elements, eQ1 is the force vector due 
to the adjacent links, e

exQ is the external force vector acting 

on the element. ee um vel 2 has the forces resulting from 

Coriolis acceleration and ee
acc um has the forces resulting 

from tangential and normal accelerations.  
The equation of motion of links is expressed as (Turcic and
Midha 1984):

11111
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111
1

1111 2 umumUmQQukum accvelex  

 (1.56) 
The equation of motion of entire mechanism is given by
(Turcic and Midha 1984): 

uMMdMdduMMdUMQuKuCuM accvelvelex )2()(20  

(1.57) 
WhereCis the viscous damping matrix, uis the displacement
vector, u is the velocity vector, u is the acceleration vector, 
and 0U is the rigid body acceleration vector of the 
mechanism.  

The derivation of equation of motion is based on small strain
theory. However axial force is effective of the stiffness
properties of the beam. Using the large strain theory, the
geometric stiffness matrix is found as follows (Turcic and
Midha 1984):
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Where F is axial force acting on element.

The equation of motion given by Equation 1.57 has been
modified as (Yang and Sadler 2000):

000 2 UMFUMKUMCUM    (1.59) 
where 
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and 

TNdxTTNATM TT
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22
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Eigenanalysis is applied to the system having mass and 
structural stiffness matrices; due to lack of generalized force 
vector in free vibration analysis as follows (Yu and Xi
2003): 

0)()( 22  rrrr UKUM  
             (1.62) 

From the following equation the natural frequencies and 
modal vectors can be obtained for flexible four-bar 
mechanism: 

XMXK krnkr )()( ,2
2

,2                 (1.63) 

3. Result and Discussion 

Figure 1.5 shows an example for four-bar mechanism 
modeled by using lumped parameter approach. The inertia 
forces given by Equation 1.40 for the lumped masses can be
found by using the acceleration expressions given by
Equations 1.34 to 1.39.Considering these forces, kinetic 
analysis of rigid four-bar mechanism can be carriedout by
using the standard procedure based on the Equation 1.42 to
1.44. 

The inertia forces acting on these lumped masses are 
summarized below: 

ixiix amF  i=1,…….., 12                      (1.64) 

iyiiy amF  i=1,…….., 12                      (1.65) 
Wherea i is the acceleration of mass m i and can be calculated 
by using the formulation 
given in Equations 1.34 to 1.39. 

Figure 1.5: A four-bar mechanism showing lumped masses. 

The numerical values of the first mechanism shown in
Figure 1.5 are listedbelow: 
r1=254mm (length of the link1) 
r2=100mm (length of the link2) 
r3=279.4mm (length of the link3) 
r4=266.7mm (length of the link4) 
d4=69.85mm (distance between A and m4) 
d5=139.7mm (distance between A and m5) 
d6=209.55mm (distance between A and m6) 
d9=200.025mm (distance between O4 and m9) 
d10=133.35mm (distance between O4 and m10) 
d11=66.675mm (distance between O4 and m11) 
In the second mechanism, the numerical values are taken as
the same listed above except r2=102 mm. 

The cross-sectional dimensions and material properties of
the first flexible fourbarmechanism are listed below (Yu and 
Xi 2003): 
b =6.1mm (width of the links) 
h=4.25mm (height of the links) 
E=200000 MPa (modulus of elasticity) 
ρ=7.8×10-9 tonnes/mm3 (density)
v=0.3 (Poisson's ratio)

For the second mechanism, the cross-sectional dimensions
and material properties are given as (Yu and Xi 2003):
b2 =4.24 mm (width of the link2)
h2=25.4 mm (height of the link2)
b3=1.6 mm (width of the link3)
h3=25.4 mm (height of the link3)
b4=1.6 mm (width of the link4)
h4=25.4 mm (height of the link4)
E=68900 MPa (modulus of elasticity)
ρ2=2.698×10-9 tonnes/mm3 (density of link2)
ρ3=2.923×10-9 tonnes/mm3 (density of link3)
ρ2=2.923×10-9 tonnes/mm3 (density of link4)
v=0.3 (Poisson's ratio)

Figure 1.6: Natural frequencies of flexible four-bar 
mechanism. 
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Figure 1.7: First mode shape of flexible four-bar 
mechanism for θ2=0o. 

Figure 1.8: Second mode shape of flexible four-bar 
mechanism for θ2=0o. 

Figure 1.9: Third mode shape of flexible four-bar 
mechanism for θ2=0o. 

Natural Frequencies of Mechanism with Internal Force 
The internal force due to the inertia force is taken into 
account in finding thenatural frequencies of mechanism for 
different angular velocities. Inertia forcesacting on the 
lumped masses of the mechanism are considered in finite 
element modelcreated in ADAMS. The results are shown in
Figures 2.0 to 2.8. 

Figure 2.0: First natural frequencies of flexible four-bar 
mechanism. 

Figure 2.1: Second natural frequencies of flexible 
mechanism. 

Figure 2.2: Third natural frequencies of flexible four-bar 
mechanism. 

Figure 2.3: First mode shape of flexible four-bar 
mechanism for ω2=10rad/sec. 
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Figure 2.4: First mode shape of flexible four-bar 
mechanism for ω2=20rad/sec. 

Figure 2.5: Second mode shape of flexible four-bar 
mechanism for ω2=10rad/sec. 

Figure 2.6: Second mode shapes of flexible four-bar 
mechanism for ω2=20rad/sec. 

Figure 2.7: Third mode shape of flexible four-bar 
mechanism for ω2=10rad/sec. 

Figure 2.8: Third mode shapes of flexible four-bar 
mechanism for ω2=20rad/sec. 

  
The upper and lower limits of the static natural frequencies 
of the flexible four bar mechanism based on the crank 
angular position can be seen from the Figure 1.6.The first 
mode shapes of the mechanism plotted in Figure1.7-1.9. 
Similarly second and third mode shapes are plotted. They 
are consistent in each other. It can be seen from Figure 2.0-
2.8 that the crank angular velocity is effective on the first 
and second dynamic natural frequencies but not on the third 
one. The first and second mode shapes of the mechanism 
plotted in Figures 2.3-2.8 are very consistent in each other, 
namely the links have the similar displacements for these 
modes. 

This study presents an Eigen analysis of flexible four-bar 
mechanism by using finite element model conjunction with 
kinematic and kinetic relationships. The solution procedure 
based on the discrete crank positions and the discrete inertia 
forces applied to the nodes of the finite element model has 
been developed in ADAMS to accomplish this analysis.  
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